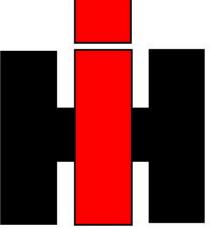

Aircraft Diesel Engines

Why haven't they been really successful?

What will the future bring?

by Bill Brogdon November 12, 2020

Rudolf Diesel 1858-1913



Some of My History

- Rambling Wreck from Georgia Tech
- 1968 B. Mechanical Engineering

- 1968-76 International Harvester
- Truck engine design and analysis

Teledyne Continental Motors, Inc. Teledyne Continental Motors

TELEDYNE CONTINENTAL MOTOR

GTD 353

- 1976-98 & 2007-10
- Design Engineer **Director Engineering Chief Engineer**
- Engines
 - TSIOL300 Boeing Condor
 - IOL-200 Voyager
 - TSIOL 550 RAM 414
 - Grob Strato 2C HALE
 - NASA GAP diesel
 - O-200D Skycatcher

Ricardo, Inc.

- 1998-06
- Design Manager Chief Engr. (Industrial &Other)
- TARDEC- Commercially based FCS engine
- Cummins Mercruiser Diesel marinized ISB
- Design and analysis direction for all engine types and clients
 - Diesel
 - Gasoline
 - Stirling
 - Engine sizes from 0.5 to 10,000 hp

About This Presentation

- Engine design guy, let me know when my jargon is unintelligble
- Airship diesel engines are left out of this presentation, there was never a successful one!
- Also true for helicopters... but some of them are in here... consistency is for sissies
- Some experimental auto conversions are included and some are not
- SI = spark ignition, CI = compression ignition (diesel)

Aircraft Diesels -- Why?

- Fuel economy
 - Cost
 - Range
- Fuel availability (Jet A available world wide, avgas no)
- Fire safety and no CO
- Operational
 - Single lever fueling control
 - Inlet (carb) icing due to fuel evaporation not an issue
- Potentially longer TBO (time between overhauls)
- The emphasis on each changes over time
- Diesels are now in a rapid phase of development due to trucks and cars; this can be applied to aircraft diesels

Factors in Engine Success

- Success is serial production of 500 or more engines for aircraft (my definition)
- Dedicated leaders with drive tempered with patience (temporal and financial)
- Financial (development funding)
- Right place, right time
- Willing aircraft OEM partners
- Regulations and Politics
- Technical
 - Appropriate power
 - Weight
 - Reliability, durability, availability, maintainability
 - Fit in airplane
 - Good operational features

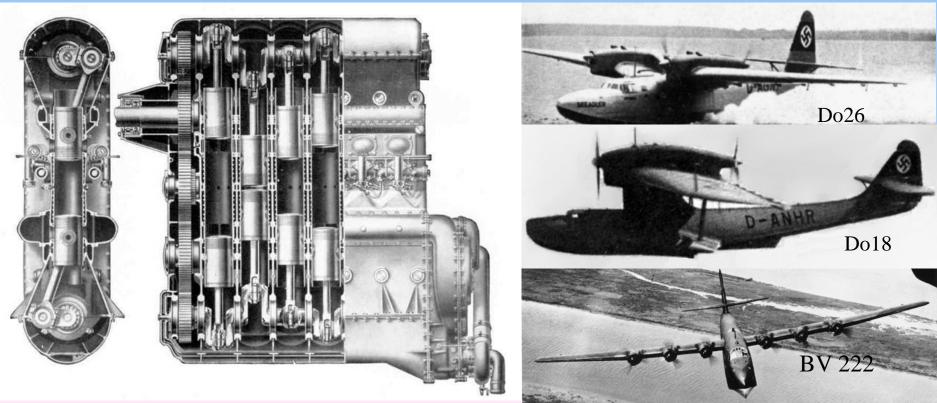
What Has Been Successful

• Junkers Jumo 205 & 207

• Charomskiy ACh-30 & M40

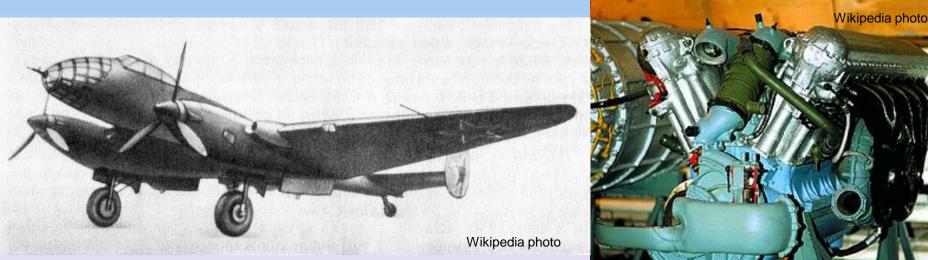
• Thielert Centurion 1.7 and 2.0

• Austro 300 & 330



Junkers Jumo 204-207

- Six cylinder opposed piston (OP) 600-1000 bhp
- Turbocharged 207 1000 hp operational to 46,000'
- Do18 with 2-205's flew 5214 miles England to Brazil, then a world distance record
- 900 engines produced from 1930's thru WW II



Junkers Jumo 204-207

- Dr. Hugo Junkers started development of OPs in 1913, first flight 1929
- Series production of the 204 began in 1931
- Series production of the 205 began in 1935
- Dr. Junkers was a brilliant engineer, a good leader, and very persistent, did not get along with Nazi's
- Junkers company was financially strong for much of the development period
- WW2 and government funding provided the right place and time
- Although successful, the Junker OPs still did not compare well technically with German SI engines
- Dr. Junkers had the advantage of also running an airplane company, but his engines were used by others too.

Charomskiy ACh-30b & M40

- 61L, V-12, 1500 bhp, liquid cooled, turbocharged, 2800 lb.
- Soviet design for long range bombers
- Development started in early '30s
- Initial engines unreliable, troublesome at high altitudes and in cold conditions
- 1526 engines built from 1940-45

Thielert Centurion

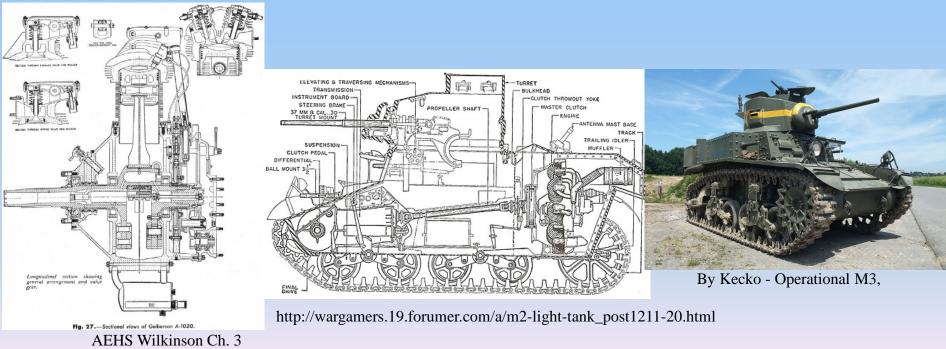
- 1.7 & 2.0 L conversions of Mercedes OM 640
- Geared, common rail, liquid cooled, 4 cylinder inline, 135 to 155 bhp
- Centurion diesel engines installed in:
 - Diamond DA40 & 42
 - General Atomics Gray Eagle (nee Predator A)
 - Finch Ecoflyer (Robin DR400)
 - STCs for Cessna 172, 206 & Piper PA28
- 3500 engines produced since 2001

Thielert Centurion

- Frank Thielert started in auto racing components in 1989
- Started Thielert Aircraft Engines in 1999
- Diamond selected the Centurion 1.7 in 2001 for the DA 40 and DA42
- Thielert and Diamond owner Christian Dries are both talented and intense, good for getting started
- Continental Motors, now Continental Aerospace Engineering purchased Thielert in 2013
- Both the Centurion and Austro (next slide) and some other planned engines are automotive based
 - Lifespan of auto engine designs are usually short ~5 years
 - Aircraft engines hang around for 50 years, this makes conformance to certified type design a real issue

Austro AE300 & 330

- 2L, 165 & 180 bhp, four cylinder, geared, common rail, 410 lb., conversion of an OM640 Mercedes car engine
- Diamond has been experimenting with a number of engine options over the years
- Diamond Aircraft formed Austro Engine company
- To replace Centurion engines in Diamond Airplanes, 1500 engines in service
- Initially a well funded company with dynamic management by Christien Dries
- Financial troubles in the 2008 recession led to acquisition by Chinese company Wanfeng Aviation in December 2017


Diamond DA 62

BERSON Diesel Engine Almost Successful

- Guiberson A-1020
 - 9 cylinder radial, two valve, 340 bhp
 - 1326 produced as a 245 bhp tank engine by Buda
 - Flew in a Stinson Reliant but overtaken by WW2 commitments to tank production
 - Evidently a smooth running, reliable engine

What Wasn't Successful

- Packard DR 980
- Napier Culverin
- BMW-Lanova 114
- KHD 710
- Bristol Phoenix
- Jalbert Loire
- Coatalen
- Clerget
- ZOD 260B
- Godfrey
- Diesel Jet

- Lawrance
- Fiat ANA

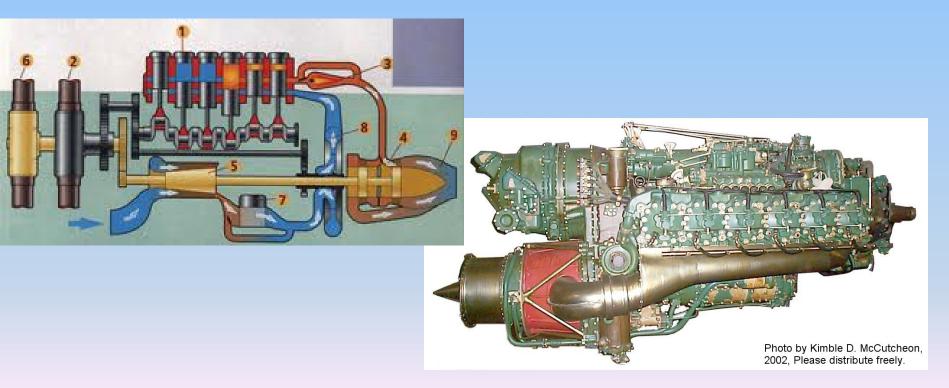
- Napier Nomad
- McCulloch
- TCM (GPD)
- NASA Compound Cycle
- Garrett 2 stroke
- Beardmore
- VM Motori

- TCM NASA GAP
- Diesel Air/Gemini
- Merlyn
- Zoche
- CRM
- EcoMotors (OPOC)
- Achates
- Rybinsk DN 200
- SCOMA-Energie
- Engine Corp. of America

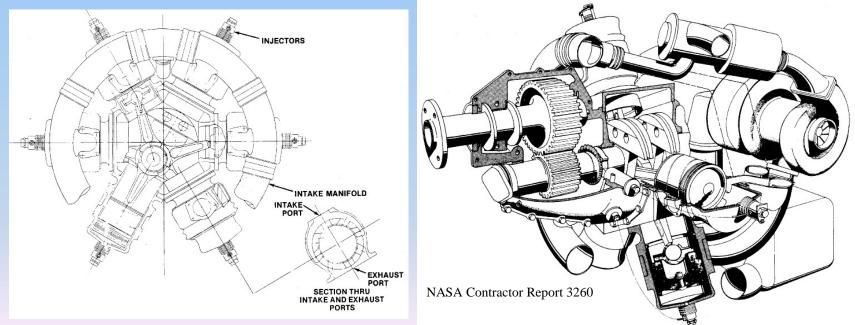
Why No Success?

A failure in leadership, financing or technical issues

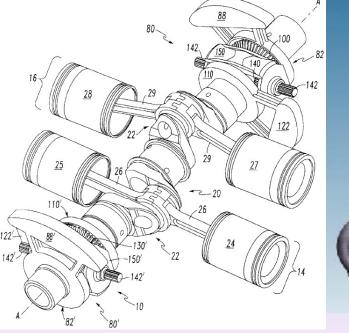
- Packard DR-980 225 hp, 9 cylinder radial, 4 stroke, 1928
 - Good financing, right place & time, but not enough power
 - Single valve cylinders without exhaust manifold let exhaust into cabin, nauseating but not deadly


- Said to vibrate badly, unknown if balance, firing impulse, or improper mounting
- Suffered reliability issues because of a short three year development program, the rush to production is the killer of many

engines



- Napier Nomad 3570 hp, 12 cyl., 2 stroke, loop scavenged, turbocompound, 1950
 - Overtaken by gas turbines, low fuel costs
 - Very complex, Napier almost never made normal engines


- TCM General Products Div 400 hp, 6 cyl. radial, 2 str., loop scav., geared, turbocompound, catalytic combustor, VAT, ceramic piston, slipper rods, adiabatic, 1980
 - Right time
 - NASA funded, not well supported by company
 - Too much weird, especially adiabatic

- TCM NASA GAP 200 hp, 4 cyl., opposed, 2 stroke, Uniflow, slipper rods, 1996
 - Right time, but power too low for diesel market
 - NASA funded, not well supported by company
 - Too much weird, especially balance system
 - Brogdon engine, no good excuse

Success TBD

Engines in Hardware

- SMA 305
- Delta Hawk
- Raikhlin
- CMD GF56
- Continental CD-230, 265
- Steyr
- Wilksch
- EPS 180° V8
- Vulcan Turbo Diesel

Paper Engines

- TEOS Powertrain Engineering
- CoAxe
- FairDiesel

SMA 305

- 230 bhp, 5L, four cylinder, opposed, air and oil cooled
- Weight competitive with SI
- Renault Sport (Formula 1) designed engine mid 90's
- Less than 100 installed, all STC's
- Tried by many OEM airframers
- Issues (reported to be resolved)
 - Propeller stress (4 cylinder)
 - Vibration (4 cylinder)
 - Charge air and oil cooler sizes
 - Minimum manifold pressure of 60" Hg
- First Reno Diesel Air Racer 2011
- Probable lack of consistent, forceful management

SMA 305

Continental CD-230, 265

Continental Motors, Inc.

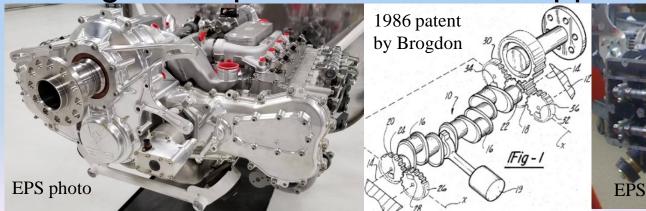
- 5L, 4 cylinder, 4 stroke, opposed, air and oil cooled
- 438 lb. weight competitive with SI
- SMA design license from 2010
- 234 bhp@2500 version for airplanes
- 264 bhp@2700 version for helicopters
- Certified but not in serial production

© bmep, Inc. 2020

Wilksch Airmotive WAM

- 130 bhp I3 and 190 bhp I4, inverted, two stroke, uniflow, IDI
- Mark Wilksch started in 1994, flew in 1997
- A pretty good small engine, smooth running, evidently fairly reliable
- 20 are flying, I flew in an RV9 in spring 2010

Raikhlin ____




- RED AO3 V12 Aircraft Engine
- FAA & EASA certification 2014
- 6L, 5-600 bhp,V12, geared, four stroke
- Clean sheet design, not auto derived
- German company, Russian design

Engineered Propulsion Systems

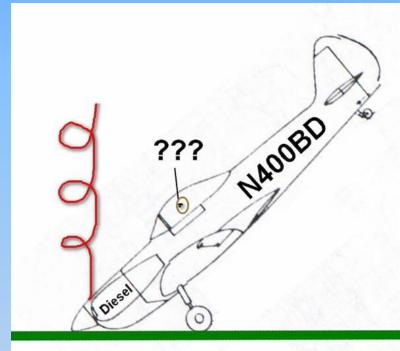
- Small start up company in New Richmond WI
- Good technology (probably best of current candidates), limited funds but good business plan
- 350 bhp, 8 cylinder, geared, 180°V, 4.4L, four stroke
- Running demonstrator (Nov 2011), BMW heads and other components, current engines use EPS parts)
- Excellent fuel consumption 192-207 gm/kW/hr (.32-.34 lb/hp/hr)
- Weight competitive, 650 lbs, supposedly in cert.

Significant Issues for the Future

- Jet-A specification has no cetane requirement
 - Current Jet-A cetane as low as 40, this is ok
 - Synthetic Jet-A may have cetane of 20 or less
 - High minimum manifold pressure requirements
 - Starting issue
 - Will the Military force cetane requirements for "one fuel forward"?
- Possible required unleaded avgas will benefit diesel
- Uncertain markets
 - Will the BRIC and other emerging nations embrace General Aviation?
 - Will a phase out of 100LL avgas wreck GA in the US?
- Will UAV's start using significant numbers of diesels or will they go to gas turbines?

What Will Drive A Successful Future Diesel

• Emerging Markets


- Big countries with small road infrastructure
 - Brazil, Russia, India, China (BRIC)
 - Africa
 - SE Asia
- Phase out or non-availability of 100LL
 - Europe
 - US in 10-15 years
- Appropriate power for airframes
 - Singles for individuals? 250-400 bhp
 - Twins for commercial? 400-1000 bhp
- Strong partnership of engine and airplane manufacturers
- Financial and management strength

What Probably Won't Work

- Two strokes (except for low power density)
 - Lubrication of the cylinder above the ports is an unresolvable issue for high power density
 - This includes:
 - Opposed Pistons (especially because of exhaust ports)
 - Achates
 - OPOC
 - DAIR/Gemini
 - CoAxe
 - FairDiesel
 - Loop scavenge
 - Delta Hawk (sorry Dennis)
 - Uniflow
 - WAM works pretty well, but power increase problematic
 - Raptor
- Barrel engines, cam engines, any non-slider crank

Why Haven't Diesels Taken Over?

- Weight, but that's improving quickly
- Other technology that was time appropriate
 - Spark ignition engines in WW2
 - Gas turbines post war
- Market success of SI in General Aviation
 - SI was good enough
- Development costs are very high for any new engine, more so for diesels

Apologies to Dr. Jan Roskam

- Interesting competition-Two pairs of similar designs
 - Air cooled 4 France vs. US-China

– Liquid cooled auto conversions – Germany vs. Austria

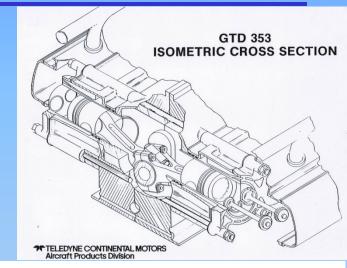
Discussion

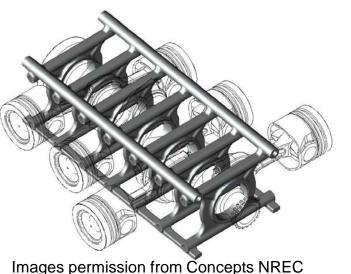
Discussion

Discussion

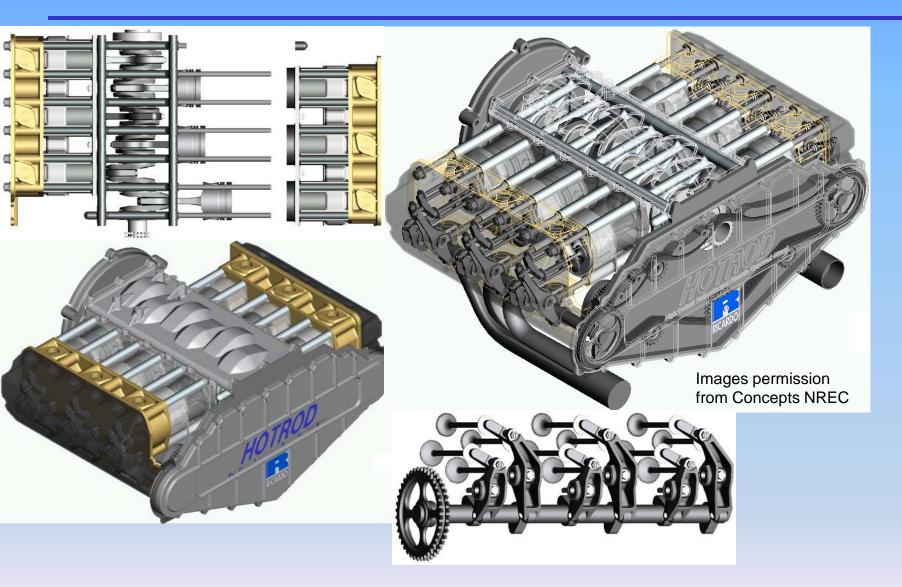
Kalinin K-7




Brogdon's Engine for the Future


- The presumption is that the diesel market will be for GA and UAV
 - ~400 bhp for personal GA (e.g. Cirrus)
 - ~1000 bhp for business GA (e.g. King Air)
 - ~30-400+ for UAV
- Four stroke, not a two stroke
 - Surpassed weight specific outputs of two strokes
 - This is the technology being developed by truck engines
 - Much better durability at high thermal loading
 - Easier turbocharger match
 - No need for starting blower
- Liquid cooled because of high power density
- Direct drive flat 6 for 400 bhp
- Geared flat 12 for 1000 bhp

Brogdon's Favored Engine Construction


- Flat six, 7 main crank, through bolted
- Flat twelve, 7 main crank, fork & blade or side by side rods
- Cylinder barrels screwed into heads to eliminate head gasket
- Steel main bearing saddle
- Overhead four valve, two high camshafts
- Unit pump or unit injector fuel
 injection

Brogdon's Favored Engine Construction

